Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 34(2): 315-327, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314728

RESUMO

Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7-RNA polymerase-dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3-hydroxybutyryl-CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315-327, 2018.


Assuntos
Técnicas Bacteriológicas/instrumentação , Escherichia coli/metabolismo , Oxigênio/análise , Proteínas Recombinantes/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Bacillus subtilis , Proteínas de Bactérias/genética , Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , RNA Polimerases Dirigidas por DNA , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Isopropiltiogalactosídeo/farmacologia , Microrganismos Geneticamente Modificados , Sistemas On-Line , Oxigênio/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Thermus thermophilus/genética , Proteínas Virais
2.
Anal Bioanal Chem ; 409(20): 4801-4809, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28573320

RESUMO

To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.


Assuntos
Automação , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Lacase/metabolismo , Resinas de Troca Aniônica/química , Espectrofotometria Ultravioleta
3.
Biotechnol Bioeng ; 114(5): 990-997, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27861738

RESUMO

One of the most critical parameters in chemical and biochemical processes is the viscosity of the medium. Its impact on mixing, as well as on mass and energy transfer is substantial. An increase of viscosity with reaction time can be caused by the formation of biopolymers like xanthan or by filamentous growth of microorganisms. In either case the properties of fermentation broth are changing and frequently non-Newtonian behavior are observed, resulting in major challenges for the measurement and control of mixing and mass transfer. This study demonstrates a method for the online determination of the viscosity inside a stirred tank reactor. The presented method is based on online measurement of heat transfer capacity from the bulk medium to the jacket of the reactor. To prove the feasibility of the method, fermentations with the xanthan producing bacterium Xanthomonas campestris pv. campestris B100 as model system were performed. Excellent correlation between offline measured apparent viscosity and online determined heat transfer capacity were found. The developed tool should be applicable to any other process with formation of biopolymers and filamentous growth. Biotechnol. Bioeng. 2017;114: 990-997. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos/microbiologia , Biotecnologia/instrumentação , Biotecnologia/métodos , Meios de Cultura/química , Viscosidade , Biopolímeros/metabolismo , Desenho de Equipamento , Fermentação , Xanthomonas campestris/metabolismo
4.
PLoS One ; 8(7): e68812, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861944

RESUMO

Expression of multiple heterologous genes in a dedicated host is a prerequisite for approaches in synthetic biology, spanning from the production of recombinant multiprotein complexes to the transfer of tailor-made metabolic pathways. Such attempts are often exacerbated, due in most cases to a lack of proper directional, robust and readily accessible genetic tools. Here, we introduce an innovative system for cloning and expression of multiple genes in Escherichia coli BL21 (DE3). Using the novel methodology, genes are equipped with individual promoters and terminators and subsequently assembled. The resulting multiple gene cassettes may either be placed in one vector or alternatively distributed among a set of compatible plasmids. We demonstrate the effectiveness of the developed tool by production and maturation of the NAD(+)reducing soluble [NiFe]-hydrogenase (SH) from Cupriavidus necator H16 (formerly Ralstonia eutropha H16) in E. coli BL21Star™ (DE3). The SH (encoded in hoxFUYHI) was successfully matured by co-expression of a dedicated set of auxiliary genes, comprising seven hyp genes (hypC1D1E1A2B2F2X) along with hoxW, which encodes a specific endopeptidase. Deletion of genes involved in SH maturation reduced maturation efficiency substantially. Further addition of hoxN1, encoding a high-affinity nickel permease from C. necator, considerably increased maturation efficiency in E. coli. Carefully balanced growth conditions enabled hydrogenase production at high cell-densities, scoring mg·(Liter culture)(-1) yields of purified functional SH. Specific activities of up to 7.2±1.15 U·mg(-1) were obtained in cell-free extracts, which is in the range of the highest activities ever determined in C. necator extracts. The recombinant enzyme was isolated in equal purity and stability as previously achieved with the native form, yielding ultrapure preparations with anaerobic specific activities of up to 230 U·mg(-1). Owing to the combinatorial power exhibited by the presented cloning platform, the system might represent an important step towards new routes in synthetic biology.


Assuntos
Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrogenase/biossíntese , Hidrogenase/genética , Técnicas de Cultura Celular por Lotes , Clonagem Molecular , Ativação Enzimática , Deleção de Genes , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Hidrogenase/isolamento & purificação , Multimerização Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...